3.367 \(\int \tan ^6(e+f x) (a+b \tan ^2(e+f x))^p \, dx\)

Optimal. Leaf size=83 \[ \frac {\tan ^7(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \left (\frac {b \tan ^2(e+f x)}{a}+1\right )^{-p} F_1\left (\frac {7}{2};1,-p;\frac {9}{2};-\tan ^2(e+f x),-\frac {b \tan ^2(e+f x)}{a}\right )}{7 f} \]

[Out]

1/7*AppellF1(7/2,1,-p,9/2,-tan(f*x+e)^2,-b*tan(f*x+e)^2/a)*tan(f*x+e)^7*(a+b*tan(f*x+e)^2)^p/f/((1+b*tan(f*x+e
)^2/a)^p)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 83, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3670, 511, 510} \[ \frac {\tan ^7(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \left (\frac {b \tan ^2(e+f x)}{a}+1\right )^{-p} F_1\left (\frac {7}{2};1,-p;\frac {9}{2};-\tan ^2(e+f x),-\frac {b \tan ^2(e+f x)}{a}\right )}{7 f} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^6*(a + b*Tan[e + f*x]^2)^p,x]

[Out]

(AppellF1[7/2, 1, -p, 9/2, -Tan[e + f*x]^2, -((b*Tan[e + f*x]^2)/a)]*Tan[e + f*x]^7*(a + b*Tan[e + f*x]^2)^p)/
(7*f*(1 + (b*Tan[e + f*x]^2)/a)^p)

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 511

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPa
rt[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(e*x)^m*(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \tan ^6(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^6 \left (a+b x^2\right )^p}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\left (\left (a+b \tan ^2(e+f x)\right )^p \left (1+\frac {b \tan ^2(e+f x)}{a}\right )^{-p}\right ) \operatorname {Subst}\left (\int \frac {x^6 \left (1+\frac {b x^2}{a}\right )^p}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {F_1\left (\frac {7}{2};1,-p;\frac {9}{2};-\tan ^2(e+f x),-\frac {b \tan ^2(e+f x)}{a}\right ) \tan ^7(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \left (1+\frac {b \tan ^2(e+f x)}{a}\right )^{-p}}{7 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 3.54, size = 0, normalized size = 0.00 \[ \int \tan ^6(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[Tan[e + f*x]^6*(a + b*Tan[e + f*x]^2)^p,x]

[Out]

Integrate[Tan[e + f*x]^6*(a + b*Tan[e + f*x]^2)^p, x]

________________________________________________________________________________________

fricas [F]  time = 0.63, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (b \tan \left (f x + e\right )^{2} + a\right )}^{p} \tan \left (f x + e\right )^{6}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^6*(a+b*tan(f*x+e)^2)^p,x, algorithm="fricas")

[Out]

integral((b*tan(f*x + e)^2 + a)^p*tan(f*x + e)^6, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \tan \left (f x + e\right )^{2} + a\right )}^{p} \tan \left (f x + e\right )^{6}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^6*(a+b*tan(f*x+e)^2)^p,x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e)^2 + a)^p*tan(f*x + e)^6, x)

________________________________________________________________________________________

maple [F]  time = 1.44, size = 0, normalized size = 0.00 \[ \int \left (\tan ^{6}\left (f x +e \right )\right ) \left (a +b \left (\tan ^{2}\left (f x +e \right )\right )\right )^{p}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^6*(a+b*tan(f*x+e)^2)^p,x)

[Out]

int(tan(f*x+e)^6*(a+b*tan(f*x+e)^2)^p,x)

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^6*(a+b*tan(f*x+e)^2)^p,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\mathrm {tan}\left (e+f\,x\right )}^6\,{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^p \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e + f*x)^6*(a + b*tan(e + f*x)^2)^p,x)

[Out]

int(tan(e + f*x)^6*(a + b*tan(e + f*x)^2)^p, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**6*(a+b*tan(f*x+e)**2)**p,x)

[Out]

Timed out

________________________________________________________________________________________